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Abstract

We show that fine-tuning only the bias terms
(or a subset of the bias terms) of pre-trained
BERT models is competitive with (and some-
times better than) fine-tuning the entire model.

Besides their practical utility, these findings
are relevant for the question of understand-
ing the commonly-used process of finetuning:
they support the hypothesis that finetuning is
mainly about exposing knowledge induced by
language-modeling training, rather than learn-
ing new task-specific linguistic knowledge.

1 Introduction

Large pre-trained transformer based language mod-
els, and in particular bidirectional masked language
models from the BERT family (Devlin et al., 2018;
Liu et al., 2019; Joshi et al., 2019), are responsible
for significant gains in many NLP tasks. Under
the common paradigm, the model is pre-trained
on large, annotated corpora with the LM objective,
and then finetuned on task-specific supervised data.
The large size of these models make them expen-
sive to train and, more importantly, expensive to
deploy. There is also a large theoretical question
regarding the fine-tuning process itself, and what
is being learned in it. These led researchers to con-
sider fine-tuning variants where one identifies a
small subset of the model parameters which need
to be changed for good performance in end-tasks,
while keeping most of the parameters intact (§2).

In this work we present a simple and effective ap-
proach to fine tuning (§3), which has the following
benefits:

1. Changing very few parameters per fine-tuned
task.

2. Changing the same set of parameters for every
tasks (task-invariance).

3. The changed parameters are both isolated and
localized across the entire parameter space.

4. Changing only these parameters reaches the
same task accuracy as full fine-tuning, and
sometimes even improves results.

Specifically, we show that freezing most of the
network and fine-tuning only the bias-terms is
surprisingly effective. Moreover, if we allow the
tasks to suffer a small degradation in performance,
we can fine-tune only two bias components (the
“query” and “middle-of-MLP” bias terms), amount-
ing to half of the bias parameters in the model, and
only 0.04% of all model parameters.

This result has a large practical utility in de-
ploying multi-task fine-tuned models in memory-
constrained environments, as well as opens the way
to trainable hardware implementations in which
most of the parameters are fixed.

It also open up a set of research directions regard-
ing the role of bias terms in pre-trained networks,
and the dynamics of the fine-tuning process.

2 Background: fine-tuning and
parameter-efficient fine-tuning

In transfer-learning via model fine-tuning, a pre-
trained encoder network takes the input and pro-
duces contextualized representations. Then, a task-
specific classification layer (here we consider linear
classifiers) is added on top of the encoder, and the
entire network (encoder+task specific classifiers) is
trained end-to-end to minimze the task loss.

Desired properties. While fine-tuning per-task
is very effective, it also results in a unique, large
model for each pre-trained task, making it hard
reason about (what was changed in the fine-tuning
process?) as well as hard to deploy, especially as
the number of tasks increases. Ideally, one would
want a fine-tuning method that:



(i) matches the results of a fully fine-tuned model;
(ii) changes only a small portion of the model’s
parameters; and (iii) enables tasks to arrive in a
stream, instead of requiring simultaneous access
to all datasets. For efficient hardware based de-
ployments, it is further preferred that (iv): set of
parameters that change values will be consistent
across different tasks.

Learning vs. Exposing. The feasibility of fulfill-
ing the above requirements depends on a fundamen-
tal question regarding the nature of the fine-tuning
process of large pre-trained LMs: to what extent
does the fine-tuning process induces the learning of
new capabilities, vs. the exposing of existing capa-
bilities, which were learned during the pre-training
process. If fine-tuning can be cast as exposure of
existing capabilities, this can allow for more effi-
cient fine-tuning and deployment, by building on
the frozen, pre-trained model, and constraining the
fine-tuning to a “small”, task-specific modification,
rather than unconstrained fine tuning over the entire
parameter space.

Existing approaches. Two recent works have
demonstrated that adaptation to various end-tasks
can in fact be achieved by changing only a small
subset of parameters. The first work, by Houlsby
et al. (2019) (“Adapters”), achieves this goal by in-
jecting small, trainable task-specific “adapter” mod-
ules between the layers of the pre-trained model,
where the original parameters are shared between
tasks. The second work, by Guo et al. (2020)
(“Diff-Pruning”), achieves the same goal by adding
a sparse, task-specific difference-vector to the orig-
inal parameters, which remain fixed and are shared
between tasks. The difference-vector is regularized
to be sparse.

Both methods allow adding only a small number
of trainable parameters per-task (criteria ii), and
each task can be added without revisiting previ-
ous ones (criteria iii). They also partially fulfill
criteria (i), suffering only a small drop in perfor-
mance compared to full fine-tuning. This supports,
to some extent, the “fine-tuning-as-exposing” hy-
pothesis. Additionally, the Adapter method, but not
the Diff-Pruning method, also supports criteria (iv).
However, Diff-Pruning is more parameter efficient
than the Adapter model, and also achieves better
task scores. We compare against Diff-Pruning in
the experiments section, and show that we perform
better, while also satisfying criteria (iv).

3 Bias-terms Fine-tuning (BitFit)

We propose a method we call BitFit (BIas-
Term FIne-Tuning), in which freeze most of the
transformer-encoder parameters, and train only the
bias-terms and the task-specific classification layer.

The approach is parameter-efficient: each new
task requires storing only the bias terms parameter
vectors (which amount to less than 0.1% of the
total number of parameters), and the task-specific
final linear classifier layer.

Concretely, the BERT encoder is composed of
L layers, where each layer ` starts with M self-
attention heads, where a self attention head (m, `)
has key, query and value encoders, each taking the
form of a linear network:

querym,l(x) = WQ,m,lx + bQ,m,l

keym,l(x) = WK,m,lx + bK,m,l

valuem,l(x) = WV,m,lx + bV,m,l

The attention computation based on these are
then concatenated and fed into a 3-layer MLP,
where layer i in the MLP takes the form

MLPi,`(x) = max(0, (WMi,`x + bMi,`))

Within the MLP there are also 2 LayerNorm
operation:

LN `,i(x) = gLNi,` � x− µ
σ

+ bLNi,`

The collection of all matrices W(·) and vec-
tors g(·) and b(·) are the network’s parameters Θ,
where the subset of parameters corresponding to
vectors b(·) are the bias terms.

The bias terms are additive, and correspond to a
very small fraction of the network: In BERTBASE
there are 102k bias parameters and in BERTLARGE
there are 271k bias parameters which make up
0.09% and 0.08% of the total number of param-
eters in each model, respectively.

We show that by freezing all the parameters
W(·) and g(·) and fine-tuning only the additive
bias terms b(·), we achieve transfer learning perfor-
mance which is comparable (and sometimes bet-
ter!) than fine-tuning of the entire network.

We also show that we can fine-tune only a subset
of the bias parameters, namely those associated
with the query and the second MLP layer (only
bQ,(·),(·) and bM2,(·)), and still achieve accuracies
that rival full-model fine-tuning.



%Params QNLI SST2 MNLIm MNLImm CoLA MRPC STSB RTE QQP
Full-FT† 100% 93.5 94.1 86.5 87.1 62.8 91.9 89.8 71.8 87.6
Full-FT 100% 89.7 93.4 — — 60.1 89.1 — 71.7 —
Diff-Prune† 0.1% 92.7 93.3 85.6 85.9 58 87.4 86.3 68.6 85.2
BitFit 0.08% 91.1 93.3 — — 62.9 91.5 90 75.1 87.6

Table 1: BERTLARGE model performance on the GLUE benchmark validation set. Lines with † indicate results
taken from (Guo et al., 2020). Cells with — were not ready on time for the anonymity period.

This approach to parameter-efficient fine-tuning
is substantially simpler than previous works,
while being highly efficient in terms of number
of changed parameters, localized in where the
changes happen and performing better on the
GLUE benchmark.

4 Experiments and Results

Datasets. We evaluate the bias-terms fine-tuning
on the GLUE benchmark (Wang et al., 2018).
Consistent with previous work (Houlsby et al.,
2019; Devlin et al., 2018) we evaluate on all
GLUE tasks except for WNLI, on which BERT
models do not outperform the majority base-
line. The remaining tasks are: Linguistic Ac-
ceptability (CoLA), Sentiment Prediction (SST-2),
Paraphrase-identification (MRPC), Quora Question
Pairs Classification (QQP), Semantic Textual Sim-
ilarity Benchmark (STS-B), Multi-Genre Natural
Language Inference (MNLI), Question Answering
NLI (QNLI), and Recognizing Textual Entailment
(RTE). For each task, we evaluate on the validation
set, report the metric used in the GLUE submission
website.

Models and Optimization We use the publicly
available pre-trained BERT-base, BERT-large (De-
vlin et al., 2018) and RoBERTA (Liu et al., 2019)
models, using the HuggingFace interface and im-
plementation.

To perform classification with BERT, we follow
the approach of Devlin et al. (2018), and attach
a linear layer to the contextual embedding of the
CLS token to predict the label. The GLUE tasks
are fed into BERT using the standard procedures.

We optimize using Adam (Kingma and Ba,
2015), with batch sizes of 8. For full fine-tuning,
we used the default initial learning rate of 3e-5, and
for the bias-only experiments we used initial learn-
ing rates between 1e-3 and 1e-4, as the 3e-5 rate
took a very long time to converge on some of the
tasks. With the larger learning rates, the bias-only
fine-tuning consistently converged in 7 or fewer

iterations, on all tasks. We did not perform hyper-
parameter optimization beyond the minimal search
over 3 learning rates.

4.1 Comparison to Diff-Pruning (Table 1)

In the first experiment, we compare BitFit to the
Diff-Pruning method, when using a comparable
number of parameters. Table 1 reports the accuracy
compared to the Diff-Pruning numbers reported by
Guo et al. (2020), on their least-parameters setting.
This experiment used the BERT-large model.

The BitFit (bias-only) results outperform the
Diff-Pruning ones on 5 out of 7 tasks, tying in
1 task, and underperform in 1,1 while using fewer
trainable parameters.

4.2 Different Base-models (Table 2)

We repeat the BERT-large results on different base-
models (the smaller BERT-base and the better per-
forming RoBERTA-base). The result in Table 2
shows that the trends remain consistent.

4.3 Fewer bias parameters (Table 3)

Can we fine-tune on only a subset of the bias-
parameter?

We define the amount of change in a bias vector
b to be 1

dim(b) |b0−bF |1, that is, the average abso-
lute change, across its dimensions, between the ini-
tial LM values b0 and its fine-tuned values bF . We
rank the different bias terms according to this met-
ric, and find that the bias terms that change the most
during bias-only fine-tuning are those associated
with the query (bQ,`,m) and with the intermediate
layer in the MLP (bM2,`, the layer which takes the
input from 768 dimensions to 3072). These amount
to about half of the bias parameters in the model.
Table 3 reports the results on fine-tuning only these
bias-terms, for the BERT-base model. Results are
only very marginally lower than when tuning all
bias parameters.

1Two numbers are missing, as they were not ready in time
for the anonymity period. They will be updated soon.



% Params QNLI SST2 MNLIm MNLImm CoLA MRPC STSB RTE QQP
BERTBASE
Full-FT 100% 90.6 92.5 — — 53.4 89.9 — 71.4 85.4
BitFit 0.09% 90.5 92.7 — — 56.0 91.7 — 72.7 82.9
BERTLARGE
Full-FT 100% 89.7 93.4 — — 60.1 89.1 — 71.7 —
BitFit 0.08% 91.1 93.3 — — 62.9 91.5 90 75.1 87.6
RoBERTABASE
Full-FT 100% 91.9 93.6 — — — 92.5 — 78.7 —
BitFit 0.09% 91.8 93.7 — — 62.0 92.7 — 81.5 —

Table 2: Results for different base models. Cells with — indicate missing values, which were not available on
time.

% Params QNLI SST2 MNLIm MNLImm CoLA MRPC STSB RTE QQP
Full-FT 100% 90.6 92.5 — — 53.4 89.9 — 71.4 85.4
BitFit 0.09% 90.5 92.7 — — 56.0 91.7 — 72.7 82.9
BitFit−∂ 0.04% 90.2 92.3 — — 57.2 — — 72.7 —

Table 3: Fine-tuning using a subset of the bias parameters. Reported results are for the BERTBASE model.

4.4 Generalization gap

When considering the generalization gap (different
between train-time and test-time performance), we
see that it is substantially smaller for the BitFit mod-
els: while for full fine-tuning the train set accuracy
reaches nearly 100%, in the bias-only fine-tuned
models the difference between the train and test set
performance is often less than 2% points.

5 Related Work

The problem of identifying the minimal set of pa-
rameters that need to be fine-tuned to achieve good
performance in end-tasks relates both to practi-
cal questions of model compression, and also to
more fundamental question on the nature of the
pre-training and finetuning process, the “linguis-
tic knowledge“ induced by each of them, and the
extent to which it generalizes to different tasks.

5.1 Over-parameterization

A large body of work has demonstrated that large
LM models are over-parameterized and have a
large degree of redundancy, which can be effec-
tively reduced without significantly affecting per-
formance. Those methods can largely be parti-
tioned to pruning-based and distillation-based com-
pression. In distillation (Buciluǎ et al., 2006; Hin-
ton et al., 2015; Urban et al., 2017), one trains
a smaller model from scratch to mimic the be-
havior of the larger model. In pruning (Karnin,
1990; Reed, 1993; Augasta and Kathirvalavakumar,

2013; Liu et al., 2014; Han et al., 2015; Molchanov
et al., 2017), one identifies the parts in the network
whose removal is less damaging to performance,
and removes them. Both methods were shown to
be effective for transformer-based language models
(Abadeer (2020); Michel et al. (2019), and many
others). The remarkable success of those works
have sparked interest the lottery-ticket hypothe-
sis (Frankle and Carbin, 2019; Chen et al., 2020;
Prasanna et al., 2020): the conjecture that large
models are needed in pretraining only to induce (in
high probability) the existing of sub-networks ini-
tialized with the correct inductive bias for learning,
and the findings that those sparse networks often
transfer well to different tasks.

Over-parameterization and fine-tuning. The
majority of works dealing with model compression
focused on retraining the model’s original perfor-
mance on the task it was trained on. Gordon et al.
(2020) have focused on the influence of pruning on
transfer learning in transformer-based LMs. They
have shown that medium pruning level do not harm
end-task performance, and that pruning the pre-
trained model once and then finetuning it to differ-
ent task is not worse then pruning each model after
the finetuning on a specific task. This suggests the
necessary “core” parts of the pre-trained model—
the parts left after pruning—are largely shared be-
tween different NLP tasks. Furthermore, the fact
pruning does not damage end-task performance
suggests that only a subset of parameters are inher-



ently needed for good performance. Aghajanyan
et al. (2020) have attempted to explain the empiri-
cal effectiveness of transfer from pruned networks
by the notion of intrinsic-dimensionality (Li et al.,
2018): the minimum dimension that is needed to
optimize a given objective to some precision. They
argue that LM pretraining implicitly induces repre-
sentations that compress well various NLP tasks,
and show that the intrinsic dimensionality of those
representations with respect to end-tasks is low.

5.2 Bias terms

Bias terms and their importance are rarely dis-
cussed in the literature. Indeed, the equations in the
paper introducing the Transformer model (Vaswani
et al., 2017) do not include bias terms at all, and
their existence in the BERT models might as well
be a fortunate mistake. Zhao et al. (2020) describe
a fine-tuning method based on masking, and explic-
itly mention ignoring the bias terms, as handling
them “did not observe a positive effect on perfor-
mance”.

An exception is the work of Wang et al. (2019)
who analyzed bias terms from the perspective of
attribution method. They have demonstrated that
the values of the bias in the last layer are respon-
sible for the predicted class, and propose a way to
back-propagate their importance. For piecewise
linear models, they point out to the ability to repre-
sent the action of the entire model on an example
as a linear model (a possibly different model for
each example), whose bias term is a function of
all bias terms in the model, as well as the other
weights. This decomposition suggests that when
finetuning the bias terms—as we do here—we im-
plicitly change only the bias term of the equivalent
linear model for each example, leaving the other
weights intact: the parameters that interact with
the input or activations are the same in the original
pre-trained model and in the fine-tuned model.

Our work empirically shows the importance
and power of the bias parameters to substantially
change the networks’ behavior, calling for further
analysis and attention on the bias terms.

6 Conclusions

We have proposed a novel method for localized,
fast fine-tuning of pre-trained transformers for end-
tasks. The method focuses the finetuning on a spe-
cific fraction of the model parameters—the biases—
and maintains good performance in all GLUE tasks

we evaluated on. The ability to focus on the same
small group of parameters eases deployment, as
the vast majority of the parameters of the model
are shared between various NLP tasks. It also al-
lows for efficient hardware implementations that
hard-wire most of the network computation with
the pre-trained weights, while only allowing few
changeable parts for inference time.

Besides its empirical utility, the remarkable ef-
fectiveness of the bias-only fine-tuning raises in-
triguing questions on the fine-tuning dynamics of
pre-trained transformers, and the relation between
the bias terms and transfer between LM and new
tasks. We aim to study those questions in a future
work.
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